EEBEB Profes 21

SOFTWARE ENGINEERING i = ——

Agile Projects In Waterfall Surroundings—
Challenges and Lessons Learned

Marcus CiolkowskKi
marcus.ciolkowski@qgaware.de Innsbruck, 01 December 2017

QAware: We specialize in quality projects.

solve
problems

Consulting Consulting shape
Analysis & Diagnosis Invent & Explore the future
Focus: EEEEE e

IT-Troubleshooting ® Cloud Native Computing

® Big Data / Machine Learning
Implementation Implementation
® |oT

Renovate & Migrate Development & Integration

@ Software Engineering

QAware | 2

Experiences gained from long-running large agile IT

¢

development projects

program size
> 150 persons ® O

©
@r4@®
° o o ’0‘&1‘
L)
Wt~ o.o.°
.0 ’OHO‘
ACILE v (7))
LV (7
context / interface partner peak team size > 25
not agile

O o {1}
o

agile fixed-price contract development over
(annually / quarterly) several years

QAware | 3

>~ W N

Agile vs. Waterfall
Success factors
Future Challenges
Summary

A trend has become commodity: Everyone Is agile now

All of our projects are agile.
OK, maybe at higher cost.

This will increase our speed-to-
market, business value, and

project success rate.

And our customer satisfaction.

lllustration: kbeis — gettyimages.de QAware | 5

A trend has become commodity: Everyone Is agile now

Also, | don't need to plan,
because | can change
everything at any time!

And | am so modern!

Great!

lllustration: kbeis — gettyimages.de QAware | 6

Bad Guy: Waterfall

@l

(other stakeholders)

@

: : System
Blg DeS|gn Up Front initiation business unit

strict sequence of phases

Involving many stakeholders l’ Bad'

(... and it is historic misunderstanding :
as well as confusion) Bureaucratic!
| J Slow!
A5 é’\\% 1 Does not adapt to change!

High risk to build the

wrong thing! truction 8
Replaces chance with error! operations

Integration, ‘
Test (IV&V)

Operation/

supplier maintenance

@

supplier

lllustration: kbeis — gettyimages.de QAware | 7

But walt... not all 1s bad.

| love waterfall!

| know what | get, when | get i,
and what | pay.

| control the project.

| can plan and make commitments to my
superiors.

Also, | have long time to think and plan
for dependencies

There are clear gateways,
roles and responsibilities

lllustration: 3Dmask — gettyimages.de

QAware | 8

But walt... not all 1s bad.

OK, there are CRs, and
| have a contract with Fine Print: we discuss about
0 guaranteed scope and quality Bug vs. CR
guaranteed schedule
ahs warranty

| know who to blame for problems

lllustration: 3Dmask — gettyimages.de

QAware | 9

But walt... not all 1s bad.

lllustration: 3Dmask — gettyimages.de

... but if anything
fails, it's everyone's
fault!

(Because everyone
signs off gateways)

QAware | 10

And now | have to do agile
| hate agile!

| know what | pay, but not what | get!

It's too fast!
| have no control!

| don't understand dependencies,

But | am responsible!

lllustration: 3Dmask — gettyimages.de

QAware | 11

The agile challenge: Combine the best of both worlds.

plan-driven /
contract work

A
guaranteed Q -~

guality & scope

ability to
commit & plan

fixed budget

continuous
planning
warranty speed

everything is
documented

start early
react quickly

Include feedback

ability to plan
' build it right

dependencies

lllustration: caraman — gettyimages.de QAware | 12

B Experiences and Challenges:
Scrum by the book does not work

@ Story cards contain insufficient information
@ Story points
® bad proxy for effort
® effort estimation in person days works better
®@ person-days more transparent for planning
® open question: effective light-weight method for estimating functionality
@ Scrum poker
® Meetings with the whole team
@ Difficult: Burndown charts
® user stories are too large

® PO unwilling to break down into smaller units

QAware | 13

B Experiences and Challenges:
Roles do not work as designed

@ Scrum places strong requirements on its roles
(product owner, scrum master, team)

® Product owners need many skills
® .. .and often don't have them

® Planning: Project manager, business responsible, release
manager, responsible for vision, long-term and detail plan,
controlling

B deliver “ready for implementation” user stories: requirements
manager, IT design

8 Other customer’s roles lose responsibilities
(architecture, build, design, etc.)

® Where is the former project manager? ©JamesNagy
https://www.jstechdesigns.com/Development/how-to-be-a-great-product-owner
Product owner? Scrum master?

® Who decides when quick decisions are needed?
VWhen (team) consensus can't be achieved?

QAware | 14

Experiences: Some Scrum practices worked

@ Daily Scrum meeting

® quick status overview, even for large teams
@ Kanban board

® several boards: specification, implementation, defects
® DoD

® includes documentation tasks

@ Sprint retrospective

QAware | 15

Experiences: Success Factors for agile projects

Continuous planning

Mini-Waterfalls per feature: Frontrunner and mini-specs
Prioritize software quality

Eliminate time killers

Software-OEM

Emphasize test automation

One team approach

QAware | 16

A

Agile vs. Waterfall
Success factors
Future Challenges
Summary

Success Factor:
Continuous Planning In Levels

Crucial problem In agile projects:
Missing range of sight in planning

User stories per sprint:

QAware | 19

We do long-term plans in several levels.
This Is critical for long-term success In large projects.

=)
.g I
S =2
= 5

Y
& o
N 0
O ®))
S -
N G
| -

sprint plan
(team plan, tasks)

2-5 weeks

QAware | 20

Although stability Is low, long-term planning Is critical for
achieving vision and prioritizing correctly.

Short term planning: exact (person-days)

Long-term planning: approximate (T-shirts)

/ stability: 90% / stability: 30%
+ + +
e (A Release +1 Release +2 Release +3
(+ 4 months) (+ 8 months) (+ 12 months)
- \ S
\ stability: 60%

QAware | 21

Continuous Planning: Adapt the product vision through
estimation workshops with the customer.

Workshop objectives:

® Validate product (annual) roadmap: Rough efforts and feasibility.
@ I[dentify risks.
@ Identify dependencies.

Side effects:
® Customer's discloses goal to the entire team.
® Develop mutual trust.

Procedure: Estimation on the basis of T-shirt sizes (e.g. S, M, L) with defined rough effort intervals.

QAware | 22

For each release, we plan and prioritize features and
maintain a mile-stone plan.

Critical for helping PO prioritize

Sprint phases ittt Sl il iilietpeldidetpeldiliel il ilielpe ity lidietpeidisll lefinfiieafiloefieafigleieiegfind ittt
S4

! ! | | |
Feature 1 * : A water-level line helps a product owner
Feature 2 ;o ———— | prioritze and helps decice on a realistic
Feature 3 I — | commitment:
Feature 4 I I I waterleve line =

L — : .
. capacity — yestimated effort >= 0

Feature 5 Iﬁ
Feature 6 | New topics push other topics down
Feature 7 : * :
Feature 8 I I
Feature 9 : ﬁ :
Feature 10 | I e I

I I I I I
Release finalization | | I e —

A A A A A

22.02.2016 28.03.2016 02.05.2016 30.05.2016 20.06.2016

: : (Feature-Freeze)
s implementation

I—— gpecification

QAware | 23

Adapt sprint length to context:
Don’t confuse planning with deployment and V&YV

Confusion between sprints as planning units vs. deployments
Sprint as planning unit

@ commit user stories for upcoming sprint

® groom backlog for next sprints

@ |eads to: short sprints to keep a sprint stable and react to changes quickly

Sprints as (internal) deployment unit
@ waterfall mindset:
® tasks must be completed as committed
® any defect found in V&V may prevent roll-out
@ consequence: code freeze and high amount of testing before deployment
® |eads to long sprints to reduce overhead

QAware | 24

Success Factor:
Frontrunner and Mini-Specs

A pre-conception phase defines architectural
cornerstones for each project and involves stakeholders.

‘

determine
functional reqs

. [
non-functional regs |
architecture

Whitepaper

sign off by stakeholders

define direction in
which to sprint

Story cards are insufficient: The path from complex
business problem to technical solution is bumpy.

/ User Story \

" As service consultant, / wantto see
the maintenance history of a vehicle,

so that| can offer a better customer =
service” solution /

Implementation?

Acceptance criteria:

o /

QAware | 27

Frontrunner teams clear the path for implementation.
Mini-waterfalls allow long-term planning.

target release

Regular planning workshops
deliver 1-2 years advance Sprint 1 > Sprint 2 > Sprint 3 ...
notice for surrounding
waterfalls.

)
)

Specification Specification

Exploration

Implementation Implementation

Determine business requirements

. Recommendation:
® Develop solution idea

Front runners accompany

® Clarify risks: _ _ _
Implementation or even do it themselves

feasibility, proof of concept

® Determine dependencies

QAware | 28

Mini-Specs help achieve Definition of Ready.

shared responsibility
involve stakeholders
give some time to plan&think

/ Mini-Spec

J
‘— Example structure:
‘ | ’ @ functional requirements
® non-functional requirements
"o ®@ acceptance criteria
A ® mockups
® interfaces
‘ b ‘— ® defect handling
IT/Architect \

Dev

5

DevOps / Ops

QAware | 29

Challenge: Documentation is often neglected when
prioritizing features.

Documentation needs to be part of DoD.
® User manual

@ System manual / design

® Architecture / detailed design

Documentation changes mindset compared to waterfall!
8 Waterfall:

® Definition & creation of documentation up-front

® Design is blueprint for implementation: correctness & completeness
8 Agile:

® Create documentation close to implementation

® Incrementally update documentation per feature: Integrate mini-specs into existing documentation

QAware | 30

In agile projects, the challenge Is to incrementally grow
documentation and keep it up-to-date.

Main challenges:
® How to maintain documentation / keep it up to date?
® Integrate documentation grooming into tasks, similar to refactoring?
8@ What is the minimum set of documentation required?
® Eliminate documentation redundancy.
@ Automate and generate from single source of specification where possible.

QAware | 31

Success Factor:
Software Quality vs.
Feature Greed.

Cost of development

= work hours
X cost per hour

+ technical debt

Build a counterpart to feature greed of product owners.
This reduces quality debt.

Success factor: Don’t negotiate quality!

Systems require phases in which fewer new features are
developed and the system is solidified.

Solutions:

8 A quality (refactoring) backlog with
ca. 10-20% of Sprint capacity.

8 Quality Sprints

8@ A Bug Hunting Day / Quality Day per release.

8 A contractually agreed-upon quality contract based on
measurable KPIs.

8 A comprehensive Definition of Done, part of which is

the quality contract.

Foto: QAware Quality Day

QAware | 34

Product Quality iIs omnipresent in the project.

sonarqube\\\

_ines Of Code Files Functions
159.951 3.090 18.536
Java Directorizz Linss Classes SEEmenE
599 326.064 3218 50334
74.2% 100,0% 1] 30,7%

=st Coverage Test Success lgnoreg Tests Duplications Comment Ratio Code Anomaliss

QAware | 35

Success Factor:
Eliminate productivity Killers.

Eliminate time consumers and productivity Killers in
Agile Methodologies.

Only relevant representatives for Develop solutions in small groups

()
@ Backlog-Grooming @ Sprint Review @
® Sprint-Planning ® Definition of Done @9 e
CR OE
s erer
— —

Daily Scrum is timeboxed Flexible sprint duration within release

QAware | 37

Unplanned interruptions are effective productivity killers.

90 A Interruptions

. N

70

60

50

40

productivity

30

20

percent of time on task

10

1 2 3 4 5 time
number of concurrent assigned tasks

QAware | 38

Success Factor:
Vertical integration depth

vertical integration depth := percentage of own code vs. code from third-
party libraries (e.g. open source components)

Maximum speed In development through software
OEM approach.

8@ Software-OEM means: Build software with low vertical integration depth based on Open-Source components.

® Careful selection of third-party components based on checklists:

... during research and selection:

... during Integration and maintenance:

IS this component necessary?

IS the licence compatible?
approvement by customer needed?
IS the component maintained?

are there known security issues?

loose or tight coupling?
IS compliance documentation complete?
are licences included appropriately?

migration to newer version needed?

QAware | 40

J '
> e —)

Success Factor: Test automation

| &
x‘ ‘\) } -
\ \ .

Large agile projects require test automation on all levels.

assumed execution cost

Explorative manual testing

Ul
tests

Acceptance tests

Integration tests

Unit tests

Test automation at these levels

® very well suited to regression tests and
reduces the effort needed for manual
testing

® does not relieve one of the obligation to
perform manual and exploratory testing

Typically good test automation at the lower
levels with all advantages.

number of tests

> automated testing

QAware | 42

Boundaries between companies do not matter in
collaboration. What counts Is joint project success.

Constructive solution-finding

_ _ Courage to bear friction
Close collaboration & partnership. .

Close to the customer (co-location?)

@
A

Retrospective

Inspectandadapt

" 4

QAware | 44

> W N

Agile vs. Waterfall
Success factors
Future Challenges
Summary

There i1s DevOps on the horizon.

We are going DevOps.

This will even further increase
our speed-to-market, business
value, and innovation.

And our customer satisfaction.

lllustration: kbeis — gettyimages.de QAware | 46

There i1s DevOps on the horizon.

Plus, | get 24/7 support
for free!

And | am sooo modern!

Great!

lllustration: kbeis — gettyimages.de QAware | 47

Trends: Many Buzzwords raise expectations.

New technologies and processes gain importance and visibility.
. | &
This raises expectations. 4‘@
X <
o o &
V) & 3 L
G/)J‘ Q . % oe’& > .\Q
4, O O 2 0
2 N%C \ ¥ = O
55 o fpevopsi®.
2. 0 F ng g
B 5 o g D€ ,P o’ Big Data
2 2 a9 5 AN,
% £aQ? IS¢,
S E \ Yoy
%continuous delivery l/,-ee
)
: e‘\(‘e Code
e\\\‘é
N
.(:\a\\
o

QAware | 48

Challenge: Master difficulties to create opportunities.

Peak of inflated expectations: Technologies will solve all problems.

However, nothing is for free.

Example: DevOps

@ Pressure from customers growing

Expectation with DevOps: 24/7 support
Problem: SMEs can't follow the sun
Challenge + Opportunity: Antifragility

® Combines techniques from Al and cloud.

® Goal: achieve self-healing / repairing properties.

® Benefit: reduce need for manual support.

QAware | 49

Cloud-native applications increase design complexity:
Components change along lifecycle.

business-availability
business-cyv

business-masterdata ‘
business-reporting
business-resourcemagmt ?:1

business-rightsmgmt
business-skilimgrmt

1 8 T R TR 1Y

@ Complexity unit ® Planning & Assignment unit @ Release unit

® Data integrity unit ® Knowledge unit ® Deployment unit

® Coherent and cohesive feature unit @ Development unit ® Runtime unit (crash, slow-down, access)
® Decoupled unit ® Integration unit @ Scaling unit

| 50

New technologies introduce new complexity.
There Is never a silver bullet.

Dev Components

System
Subsystems
Components

Services

Ops Components

Monolith
Macroservices
Microservices
Nanoservices

+ more flexible scaling

+ better resource utilization

Decomposition Trade-Offs

+ runtime isolation (crash, slow-down, ...) —

+ independent releases, deployments, teams —

distribution debt: Latency
iIncreasing infrastructure complexity
increasing troubleshooting complexity

Increasing integration complexity

|51

Trend: Appl

Big Data Landscape 2016

ALGORITHMS ANALYTICS FRONTENDS

ications comb

For more big data know-how see

qaware.de/news/big-data-landscape

MICRO ANALYTICS SERVICES:

Subsitutes for reporting servers

Dashboards Charting Libraries
ok + O .

s pandss P - ho S ouadls . P

WATER e pentaho @5 4 Rickshww de.js

- ‘. e ® /) =- 03 Flot
B - 10 T Wreaslenn Rbirst loDker RazoeFlow Droptiles NVO3 DataTables

TenserFlow infoVis Chart)§
HWghcharts

B

POLYGLOTT PERSISTENCE &
ANALYTICS

NewSOL: SQL meets NoSQL.

o

‘Q \&a *TAJO (P chnaos
Socnarvan [losnix - n\f

Spo&:SOL Kylin B2 SNAPPYDATA Impala

Index Machines: Fast aggregation
and search,

ore | " 8 elasiomanch

In-Memory Databases: Fast access,

@ ode
(ookode Apmhapmow Sigime

Time Series Databases
) HBnfluxDB oeenTioe Heie

EXm 2.2

Inte

ractive Analysis | Reporting & Dashboards

Usar Interfaco

STRUCTURED DATA LAKE:

The aternal mamory.

Distributed Filesystem

Data Warehousa
o)
& .

ld'ﬁ’;q' :'::"‘:'::l ALLUXIO

NoSQL DB
g

Data Laka / amechHE .
B S e 2

Efficient data serialization formats:

* Integated compression
* Column-oriented storage
* Pradicate pushdown

G LEETED

Thett
Graph Databases

PN) Arang=DB “Qienios csr.:ﬁ“;
Data Workflows ETL Jobs 'h:l:s;l;:z . Data Logistics Stream Processing

rallelization)

@ donkins 3 ﬁ a F
ooYEmaE nifi .l custading <2 Sporif §8k°fk° @ — £3P STuRM
Wit spoi’ talend ipnitug e/ drbee .

Big Data landscape

o]RIWIRIR|E

SOFTWAHE ENGINEERING

Ine many complex frameworks

-
2,
/ &
d
t
.Sj"s //,,(.U / C}g{
S WS T T
o S
S % P = Q) 8 ’/“(a, '0;35% o /90(
4;01(= C\\\ r, ocf., \ 7% ‘oY ‘ OQ e 4 =
ate):L,A\\ e 5 on O €~ 9 ® 7 N “Heliosg
uxQ ¢ B s 4oy, 3 Wog. o 0, % o S 2 Z o H
Z : (e 2 2
§ &é&‘ e verS N'\Qc'::p ' *OcAs O MR g M\ots
& &J:’ @ NN :L‘”‘dd . d:f\"%\'\": \‘é\k A L i T ke
o, " i \h aC (t}l]x /X'. ,h w / - ' ./ » b7 T
o X %Q~ g "charusf Ce, Pax6sQ’' e v g G
& Pal&nax SP:mg Poot B 1 oo Mieroser' ?'o ’ii’& ’ ~°¢°‘ Co®
> VULCAN'ES ¢ 2 W .2 % ¥
: = Cangderf ° 7% t1yperbah26.o7
(\.)\\ N ,'\3' = "'}@Weuve Flux ?OT
e & ‘% S '7\,31/
S
VQ‘
O

Cloud landscape

QAware | 52

We use a technology rad

ar to al

d technology decisions.

() Eclipse
() Moco
S Loadi’ _) Software .
() Log4J 1.x .
i () Web Compo... p S o
() CoffeeSer.., = 2
() ReactiveX
- () Betamax
) Atmosphere () Spring Lo...
' () Ansible | Chef () Mocha
() Kendo Ul @il (") Cucumber. .
S camet L) SEU-as-Ca... |1) Packer =
| Protocol . Camel () Cucumber () WAPT
*) PrimeUl o o ’L‘,‘l‘:’f" % L by () Docker () Hawtio
(YMappB oD3is () TypeScrpt L4 E “ WireMock o () Lazybones
S ’ @ ' Vagran
;) Ruby L Soay _) SoapUl Ja's&;me ol () Compass
() Dart () JavaScript (_, mzre ana N Puppet. | 2 i
= AngularJS T Y Rettme 8 OWASP Dep... (_) Protractor) Ant
()G () ProjectR |" Metncs (R S iaven S Gatlin () Qu;p () Jadler
s . en Browserﬁ*'u?' St.. pui) Xamarin
- Bootstrap) Judva C» onarQu _) NetBeans ('R it
) Kyo O Hystrix L JSF 1 mlemJ == estito
- > 1 (l
. : (") SLF4J \ sfme L) JPIOﬁef ; ,gg,sagger &L
\) HikanCP SN[) java 3 [Hierate- 4 Gﬁ'“’“"'e T-assu. 2
>~ 5 ASSESS
= () PortletS.. " [Responsiv... (") Push Depl
|) Spark |)JavaEE - o ~
N = S [) Feature T... A ~) Reaclive .)Eeature B
() SpringBo... . _ . —— : (JJavaScrip .
() Yam A .Elastlcse‘.) Spnng Fr.. @) Test Driv.) API Manag...
=<) Vamish e -
() NewSQL Da... x |) ESB Serve...
2 P~ o < ’__‘I Gherkin-b__
() Sinatra-l... L) Solt [) NET () Stream Pr...
i () OpenID Co... . : [) Kontinuie .
L RXopHEa : () NoSQL Dat . P~
() Java Embe... ./ Mesos _\JBESTAPI..
() Hadoop2 M.. [) NGINX | Page Obje..
—~) . : | JLogsals
\J WS-* Stan...) NxOS ‘I IDM Server 0gs
(") OAuth2.0 () Web Appii.. (") Microserv... N
= "_tt’ Des‘gﬂ fO \ > !!!brld AQ
: | Akka d
() OSGi) Core0S O) MongoDB () TestReco
() Private P..

QAware | 53

Challenge: Combining powerful tools without planning
or understanding Is dangerous.

Complexity of technologies is rising.
Technologies used based on coolness without clear goal/value.

Agile Trap: Agile teams start using barely-understood technologies without planning.

New trends lead to:
® Combining many different products (with many defects)
® Complex, powerful tools: use with care

Challenge:
® How to do software engineering?
® How to maintain an overview?

® How to maintain intellectual control?

QAware | 54

Challenge: Requirements on developers rise.

UX
designer

Mmanager

architect developer grap_hlc
artist
technology .
manager
expert
business
analyst

QAware | 55

Challenge: Mixed teams without boundaries diffuse
responsiblility.

Teams mix across company boundaries

@ across suppliers: different suppliers develop the same components

across customer/supplier: customers are part of development team

across skills: development, UX experts, designers, graphic artists, operations, ...

no clear separation between contributions of different teams/companies

This raises many questions
® Co-location vs. distribution & communication?
® \What happens to warranty?

® Who is responsible for quality?

QAware | 56

Challenge: Contracting

Contracting evolves towards time & material
® Who is responsible for the outcome? Scope?
® Who is responsible for quality?

® How can emergent architectures work for such teams?

As supplier:
® How to keep gquality as USP? What about customer satisfaction?

8@ How to distinguish your company'’s contribution from others?

How can we write contracts in the future?
® Is it meaningful to model teams, contribution and collaboration as components with interfaces?
® Components: teams, responsibilities; Interfaces: communication, data flow.

® If yes, do the same rules apply as for software design?

QAware | 57

Challenge: Testing pyramid may need to be inverted

Integration level

automated testing

Ul
tests

Acceptance tests

Integration tests

Unit tests

Test automation at high levels required:
® anything can change at runtime

® critical: detect backend (service) failure
quickly

® manual and exploratory testing are still
needed

System behavior undefined at integration
time: (Micro-) services are external and can
change at runtime.

number of tests

> automated testing

QAware | 58

Takeaway Messages: Success Factors for Agile Projects

@ Agile processes are often surrounded by or originate from waterfall thinking.

@ Success requires embracing and involving stakeholders.

8 Opportunity: Combine best of contract work and agile:

® ability to long-term planning and commitment
® flexibility to change and incorporate feedback

In our experience, critical for successful agile projects are:

Courage to plan in agile mode.

Frontrunning: keep up speed while bridging the gap between problem and solution.
Establishing quality as counterpart to feature greed.

Establishing light-weight formalities.

Establishing efficient meeting structures.

QAware | 59

Takeaway Messages: Future Trends

Future trends: Since everyone is agile now, we can increase speed even more
8 Mixed teams: Throw people into team; they will organize themselves efficiently?
® Combination of complex, poorly understood technology will lead to great, robust systems?
Challenges
@ Contracting: Fixed-price contracts with warranty lose importance.

® Future: Contracts on time and material only (Labour Leasing)?

® Process and Contract modelling: contract/process models using components and interfaces?
® Education: Skills and interdisciplinarity gain importance.

® Software Engineering teams need to master many more skills.

® What are Software Engineering methods for managing fast-evolving technology zoos?
® Documentation: Incremental light-weight documentation needed.

® How can we keep (incremental) documentation up to date?

® Which documentation i1s needed?

QAware | 60

Marcus Ciolkowski Y twitter.com/gaware)(Xing.com/gaware

marcus.ciolkowski@gaware.de IN linkedin.com/gaware W slideshare.net/gaware

O github.com/gaware i youtube.com/QAwareGmbH

