
Marcus Ciolkowski

marcus.ciolkowski@qaware.de

Agile Projects in Waterfall Surroundings

Challenges and Lessons Learned

Innsbruck, 01 December 2017

QAware 2

QAware: We specialize in quality projects.

solve

problems

shape

the future

Consulting

Analysis & Diagnosis

Implementation

Renovate & Migrate

Consulting

Invent & Explore

Implementation

Development & Integration

Focus:

IT-Troubleshooting

Focus:

Cloud Native Computing

Big Data / Machine Learning

IoT

Software Engineering

Experiences gained from long-running large agile IT
development projects

QAware 3

peak team size > 25

program size
> 150 persons

context / interface partner
not agile

agile fixed-price contract
(annually / quarterly)

development over
several years

1. Agile vs. Waterfall

2. Success factors

3. Future Challenges

4. Summary

A trend has become commodity: Everyone is agile now

QAware 5

All of our projects are agile.

This will increase our speed-to-
market, business value, and

project success rate.

Because we do Scrum.

And our customer satisfaction.

Illustration: kbeis gettyimages.de

OK, maybe at higher cost.

A trend has become commodity: Everyone is agile now

QAware 6

because I can change
everything at any time!

And I am so modern!

Great!

Illustration: kbeis gettyimages.de

Bad Guy: Waterfall

QAware 7

Big Design Up Front

strict sequence of phases

involving many stakeholders

as well as confusion)

System

initiation

Requirements

Design

Detailed

design

Construction

Integration,

Test (IV&V)

Operation/

maintenance

build

design

operations

business unit

architecture

supplier

(other stakeholders)

supplier

project managerBad!

Bureaucratic!
Slow!
Does not adapt to change!
High risk to build the

wrong thing!
Replaces chance with error!

Illustration: kbeis gettyimages.de

supplier

QAware 8

I love waterfall!

I know what I get, when I get it,
and what I pay.

I control the project.

Also, I have long time to think and plan
for dependencies

There are clear gateways,
roles and responsibilities

I can plan and make commitments to my
superiors.

Illustration: 3Dmask gettyimages.de

QAware 9

I have a contract with Fine Print:
guaranteed scope and quality
guaranteed schedule
warranty

I know who to blame for problems

OK, there are CRs, and
we discuss about
Bug vs. CR

Illustration: 3Dmask gettyimages.de

QAware 10

fault!

(Because everyone
signs off gateways)

Illustration: 3Dmask gettyimages.de

QAware 11

And now I have to do agile
I hate agile!

I know what I pay, but not what I get!

I have no control!

But I am responsible!

Illustration: 3Dmask gettyimages.de

The agile challenge: Combine the best of both worlds.

QAware 12

plan-driven /
contract work agile

guaranteed
quality & scope

ability to
commit & plan

warranty

everything is
documented

fixed budget

continuous
planning

speed

start early
react quickly

ability to plan
dependencies

include feedback
build it right

Illustration: caraman gettyimages.de

Experiences and Challenges:
Scrum by the book does not work

QAware 13

Story cards contain insufficient information

Story points

bad proxy for effort

effort estimation in person days works better

person-days more transparent for planning

open question: effective light-weight method for estimating functionality

Scrum poker

Meetings with the whole team

Difficult: Burndown charts

user stories are too large

PO unwilling to break down into smaller units

Experiences and Challenges:
Roles do not work as designed

QAware 14

Scrum places strong requirements on its roles
(product owner, scrum master, team)

Product owners need many skills

Planning: Project manager, business responsible, release
manager, responsible for vision, long-term and detail plan,
controlling

manager, IT design

(architecture, build, design, etc.)

Where is the former project manager?
Product owner? Scrum master?

Who decides when quick decisions are needed?

© James Nagy
https://www.jstechdesigns.com/Development/how-to-be-a-great-product-owner

Experiences: Some Scrum practices worked

QAware 15

Daily Scrum meeting

quick status overview, even for large teams

Kanban board

several boards: specification, implementation, defects

DoD

includes documentation tasks

Sprint retrospective

Experiences: Success Factors for agile projects

QAware 16

Continuous planning

Mini-Waterfalls per feature: Frontrunner and mini-specs

Prioritize software quality

Eliminate time killers

Software-OEM

Emphasize test automation

One team approach

1. Agile vs. Waterfall

2. Success factors

3. Future Challenges

4. Summary

Success Factor:
Continuous Planning in Levels

Crucial problem in agile projects:
Missing range of sight in planning

QAware 19

Sprint 1 Sprint 2 Sprint 3

User stories per sprint:

We do long-term plans in several levels.
This is critical for long-term success in large projects.

QAware 20

Sprint Sprint SprintSprint Sprint

release release release

annual volume annual volume

projectproduct vision

annual road map

sprint plan
(team plan, tasks)

release plan

years

12 months

3-4 months

2-5 weeks

su
b
st

an
ti
at

io
n

ra
n
g
e
 o

f
si

g
h
t

Sprint

Although stability is low, long-term planning is critical for
achieving vision and prioritizing correctly.

QAware 21

Short term planning: exact (person-days)

Long-term planning: approximate (T-shirts)

current Release Release +1
(+ 4 months)

Release +2
(+ 8 months)

Release +3
(+ 12 months)

S1 S2 S3

stability: 10%

stability: 90%

stability: 60%

stability: 95%

stability: 30%

today

Continuous Planning: Adapt the product vision through
estimation workshops with the customer.

QAware 22

Workshop objectives:

Validate product (annual) roadmap: Rough efforts and feasibility.

Identify risks.

Identify dependencies.

Side effects:

Customer's discloses goal to the entire team.

Develop mutual trust.

Procedure: Estimation on the basis of T-shirt sizes (e.g. S, M, L) with defined rough effort intervals.

For each release, we plan and prioritize features and
maintain a mile-stone plan.

QAware 23

Jan. Febr. März Apr. Mai Juni

04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Feature 1

Feature 5

Feature 2

Feature 3

S5

Feature 10

Feature 7

Feature 8

Feature 9

Release finalization

cal.week

month

Sprint phases

Feature 4

Feature 6

02.05.201628.03.201622.02.2016

S3 S4S2S1

20.06.201630.05.2016
(Feature-Freeze)

A water-level line helps a product owner
prioritze and helps decice on a realistic

commitment:
water-leve line =

capacity

New topics push other topics down

implementation

specification

Critical for helping PO prioritize

Adapt sprint length to context:

QAware 24

Confusion between sprints as planning units vs. deployments

Sprint as planning unit

commit user stories for upcoming sprint

groom backlog for next sprints

leads to: short sprints to keep a sprint stable and react to changes quickly

Sprints as (internal) deployment unit

waterfall mindset:

tasks must be completed as committed

any defect found in V&V may prevent roll-out

consequence: code freeze and high amount of testing before deployment

leads to long sprints to reduce overhead

Success Factor:
Frontrunner and Mini-Specs

A pre-conception phase defines architectural
cornerstones for each project and involves stakeholders.

Pre-conception Project

determine

functional reqs

non-functional reqs

architecture

Whitepaper

sign off by stakeholders

define direction in
which to sprint

Story cards are insufficient: The path from complex
business problem to technical solution is bumpy.

QAware 27

As service consultant, I want to see
the maintenance history of a vehicle,
so that I can offer a better customer

Acceptance criteria:
•

User Story

solution /
implementation?

Frontrunner teams clear the path for implementation.
Mini-waterfalls allow long-term planning.

QAware 28

Exploration

Specification

Implementation

Sprint 2

target release

Determine business requirements

Develop solution idea

Clarify risks:

feasibility, proof of concept

Determine dependencies

Specification

Implementation

Sprint 1

Recommendation:

Front runners accompany

implementation or even do it themselves

Regular planning workshops
deliver 1-2 years advance

notice for surrounding
waterfalls.

reqs spec reqs spec

Mini-Specs help achieve Definition of Ready.

QAware 29

Mini-Spec

Example structure:

functional requirements

non-functional requirements

acceptance criteria

mockups

interfaces

defect handling

PO

IT/Architect DevOps / Ops

Dev

shared responsibility

involve stakeholders
give some time to plan&think

Challenge: Documentation is often neglected when
prioritizing features.

QAware 30

Documentation needs to be part of DoD.

User manual

System manual / design

Architecture / detailed design

Documentation changes mindset compared to waterfall!

Waterfall:

Definition & creation of documentation up-front

Design is blueprint for implementation: correctness & completeness

Agile:

Create documentation close to implementation

Incrementally update documentation per feature: Integrate mini-specs into existing documentation

In agile projects, the challenge is to incrementally grow
documentation and keep it up-to-date.

QAware 31

Main challenges:

How to maintain documentation / keep it up to date?

Integrate documentation grooming into tasks, similar to refactoring?

What is the minimum set of documentation required?

Eliminate documentation redundancy.

Automate and generate from single source of specification where possible.

Success Factor:
Software Quality vs.
Feature Greed.

Cost of development

+ technical debt

= work hours
x cost per hour

Build a counterpart to feature greed of product owners.
This reduces quality debt.

QAware 34

Success factor:

Systems require phases in which fewer new features are
developed and the system is solidified.

Solutions:

A quality (refactoring) backlog with
ca. 10-20% of Sprint capacity.

Quality Sprints

A Bug Hunting Day / Quality Day per release.

A contractually agreed-upon quality contract based on
measurable KPIs.

A comprehensive Definition of Done, part of which is
the quality contract.

Foto: QAware Quality Day

Product Quality is omnipresent in the project.

QAware 35

Success Factor:
Eliminate productivity killers.

Develop solutions in small groups

Daily Scrum is timeboxed Flexible sprint duration within release

Eliminate time consumers and productivity killers in
Agile Methodologies.

QAware 37

S2 S6S4S3 S5 S7S12 weeks

2-5 weeks

vs.

Only relevant representatives for

Backlog-Grooming

Sprint-Planning

Sprint Review

Definition of Done

S2 S4S3S1

Unplanned interruptions are effective productivity killers.

QAware 38

interruptions

time

p
ro

d
u

c
ti
vi

ty

p
e

rc
e

n
t

o
f

ti
m

e
 o

n
 t

as
k

number of concurrent assigned tasks

Success Factor:
Vertical integration depth

vertical integration depth := percentage of own code vs. code from third-
party libraries (e.g. open source components)

Maximum speed in development through software
OEM approach.

QAware 40

Software-OEM means: Build software with low vertical integration depth based on Open-Source components.

Careful selection of third-party components based on checklists:

loose or tight coupling?

is compliance documentation complete?

are licences included appropriately?

migration to newer version needed?

is this component necessary?

is the licence compatible?

approvement by customer needed?

is the component maintained?

are there known security issues?

01.12.2017

QAware 41

Success Factor: Test automation

Large agile projects require test automation on all levels.

QAware 42

UI
tests

Typically good test automation at the lower

levels with all advantages.

as
su

m
e

d
 e

xe
c
u

ti
o

n
 c

o
st

number of tests

Acceptance tests

Explorative manual testing

automated testing

Test automation at these levels

very well suited to regression tests and
reduces the effort needed for manual
testing

does not relieve one of the obligation to
perform manual and exploratory testing

Integration tests

Unit tests

01.12.2017

QAware 43

Boundaries between companies do not matter in
collaboration. What counts is joint project success.

QAware 44

Retrospective

Constructive solution-finding
Courage to bear friction

Politics

Close collaboration & partnership.
Close to the customer (co-location?)

Celebrate successes together

1. Agile vs. Waterfall

2. Success factors

3. Future Challenges

4. Summary

There is DevOps on the horizon.

QAware 46

We are going DevOps.

This will even further increase
our speed-to-market, business

value, and innovation.

And our customer satisfaction.

Illustration: kbeis gettyimages.de

There is DevOps on the horizon.

QAware 47

Plus, I get 24/7 support
for free!

And I am sooo modern!

Great!

Illustration: kbeis gettyimages.de

Trends: Many Buzzwords raise expectations.

QAware 48

New technologies and processes gain importance and visibility.

This raises expectations.

Challenge: Master difficulties to create opportunities.

QAware 49

Peak of inflated expectations: Technologies will solve all problems.

However, nothing is for free.

Example: DevOps

Pressure from customers growing

Expectation with DevOps: 24/7 support

Challenge + Opportunity: Antifragility

Combines techniques from AI and cloud.

Goal: achieve self-healing / repairing properties.

Benefit: reduce need for manual support.

50

Cloud-native applications increase design complexity:
Components change along lifecycle.

DESIGN BUILD RUN

1:1 ?:1

Complexity unit

Data integrity unit

Coherent and cohesive feature unit

Decoupled unit

Planning & Assignment unit

Knowledge unit

Development unit

Integration unit

Release unit

Deployment unit

Runtime unit (crash, slow-down, access)

Scaling unit

51

System

Subsystems

Components

Services

Decomposition Trade-Offs

Microservices

Nanoservices

Macroservices

Monolith

+ more flexible scaling

+ runtime isolation (crash, slow-

+ independent releases, deployments, teams

+ better resource utilization

 distribution debt: Latency

 increasing infrastructure complexity

 increasing troubleshooting complexity

 increasing integration complexity

Dev Components Ops Components?:1

New technologies introduce new complexity.
There is never a silver bullet.

QAware 52

Trend: Applications combine many complex frameworks

Big Data landscape Cloud landscape

QAware 53

We use a technology radar to aid technology decisions.

Challenge: Combining powerful tools without planning
or understanding is dangerous.

QAware 54

Complexity of technologies is rising.

Technologies used based on coolness without clear goal/value.

Agile Trap: Agile teams start using barely-understood technologies without planning.

New trends lead to:

Combining many different products (with many defects)

Complex, powerful tools: use with care

Challenge:

How to do software engineering?

How to maintain an overview?

How to maintain intellectual control?

Challenge: Requirements on developers rise.

QAware 55

developer

UX
designer

graphic
artist

architect

technology
expert

business
analyst

operations
manager

manager

Challenge: Mixed teams without boundaries diffuse
responsibility.

QAware 56

Teams mix across company boundaries

across suppliers: different suppliers develop the same components

across customer/supplier: customers are part of development team

no clear separation between contributions of different teams/companies

This raises many questions

Co-location vs. distribution & communication?

What happens to warranty?

Who is responsible for quality?

Challenge: Contracting

QAware 57

Contracting evolves towards time & material

Who is responsible for the outcome? Scope?

Who is responsible for quality?

How can emergent architectures work for such teams?

As supplier:

How to keep quality as USP? What about customer satisfaction?

How can we write contracts in the future?

Is it meaningful to model teams, contribution and collaboration as components with interfaces?

Components: teams, responsibilities; Interfaces: communication, data flow.

If yes, do the same rules apply as for software design?

Challenge: Testing pyramid may need to be inverted

QAware 58

UI
tests

System behavior undefined at integration

time: (Micro-) services are external and can

change at runtime.

in
te

g
ra

ti
o

n
 le

ve
l

number of tests

Acceptance tests

automated testing

automated testing

Test automation at high levels required:

anything can change at runtime

critical: detect backend (service) failure
quickly

manual and exploratory testing are still
needed

Integration tests

Unit tests

Takeaway Messages: Success Factors for Agile Projects

QAware 59

Agile processes are often surrounded by or originate from waterfall thinking.

Success requires embracing and involving stakeholders.

Opportunity: Combine best of contract work and agile:

ability to long-term planning and commitment

flexibility to change and incorporate feedback

In our experience, critical for successful agile projects are:

Courage to plan in agile mode.

Frontrunning: keep up speed while bridging the gap between problem and solution.

Establishing quality as counterpart to feature greed.

Establishing light-weight formalities.

Establishing efficient meeting structures.

Takeaway Messages: Future Trends

QAware 60

Future trends: Since everyone is agile now, we can increase speed even more

Mixed teams: Throw people into team; they will organize themselves efficiently?

Combination of complex, poorly understood technology will lead to great, robust systems?

Challenges

Contracting: Fixed-price contracts with warranty lose importance.

Future: Contracts on time and material only (Labour Leasing)?

Process and Contract modelling: contract/process models using components and interfaces?

Education: Skills and interdisciplinarity gain importance.

Software Engineering teams need to master many more skills.

What are Software Engineering methods for managing fast-evolving technology zoos?

Documentation: Incremental light-weight documentation needed.

How can we keep (incremental) documentation up to date?

Which documentation is needed?

Marcus Ciolkowski

marcus.ciolkowski@qaware.de

github.com/qaware

linkedin.com/qaware slideshare.net/qaware

twitter.com/qaware xing.com/qaware

youtube.com/QAwareGmbH

