

Bringing the Human into the Loop

presented by Barbara Weber

.

Software Engineers Missing

... the World is Looking for Software Engineers

Higher Quality and Productivity through Focus on People

 Numerous studies confirmed order-of-magnitude differences among software developers in terms of productivity

(Curtis 1981, Mills 1983, DeMarco and Lister 1985, Curtis et al. 1986, Card 1987, Boehm and Papaccio 1988, Valett and McGarry 1989, Boehm et al 2000)

 Focus on people recognized as a a way to improve software quality and software developers' productivity (Boehm & Papaccio, 1988)

Importance of Human Factors Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools Working software over comprehensive documentation Customer collaboration over contract negotiation Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Software Engineering Research Traditionally Focused on Technical Aspects

Only recently an increasing focus on human factors can be observed

Towards Individualized Software Engineering: Empirical Studies Should Collect Psychometrics

Robert Feldt Richard Torkar Blekinge Institute of Technology SE-372 25 Ronneby, Sweden rfd@bth.se Lefteris Angelis Dept. of Informatics Aristotle University of Thessaloniki 54124 Thessaloniki, Greece lef@csd.auth.gr Maria Samuelsson Dept. of Informatics University West SE-461 86 Trollhättan, Sweden

Personality in Software Engineering

Computers in Human Behavior 46 (2015) 94-113

Forty years of research on personality in software engineering: A mapping study

Shirley Cruz^a, Fabio Q.B. da Silva^{a,*}, Luiz Fernando Capretz^b

^a Centre for Informatics, Federal University of Pernambuco, Av. Jornalista Anibal Fernandes, s/n - Cidade Universitária, Recife, PE 50.740-560, Brazil ^b Department of Electrical & Computer Engineering, Western University, London, Ontario N6A5B9, Canada

covers 90 articles between 1970 and 2010 72% of studies published after 2002

Happy Developers, Better Problem-Solver Human Factors Matter

Happy software developers solve problems better: psychological measurements in empirical software engineering

(D. Graziotin, X. Wang, P. Abrahamsson 2014)

... so far, potential largely untapped

Substantial Potential of Neuroscience and Psychophysiological Methods and Tools

both from a design science/engineering perspective and from a theoretical perspective

Eye-tracking in Software Engineering

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

CrossMark

Zohreh Sharafi¹, Zéphyrin Soh*, Yann-Gaël Guéhéneuc*

Ptidej Team, Départment de Génie Informatique et Génie Logiciel, Polytechnique Montréal, Québec, Canada

covers 36 articles between 1990 and 2015

Eye-tracking in Software Engineering

covers 36 articles between 1990 and 2015 86,2% of studies published after 2006

Design science Methods and neuroscience literature

IT Artifact

Design science Methods and neuroscience literature Neuroscience and Psychophysiological methods and tools

Brain activity as mediator

Design science Methods and neuroscience literature Neuroscience and Psychophysiological methods and tools

Brain activity as mediator

Self-reported questionnaires

- Feelings
- Beliefs
- Attitudes
- Behavioral Intentions

Design science Methods and neuroscience literature Neuroscience and Psychophysiological methods and tools

Brain activity as mediator

Self-reported questionnaires

Attitudes

Computerized tools and observations

- Navigation
- Behavioral Intentions Decisions

Design science Methods and neuroscience literature Neuroscience and Psychophysiological methods and tools Brain activity

, as mediator Self-reported questionnaires

Computerized tools and observations

Potential from a Theoretical Perspective

- Brain activity as a mediator between IT artifact and IT behavior
- Advanced theoretical understanding of mechanism underlying the influence of the IT artifact on IT behavior
- Measurement of constructs that cannot be reliably measured through self-reports
- Biological states and processes as better predictors for behaviorally relevant outcome variables than self-reported ones
- Long-term effect of IT artifact on brain

Brain Activation During Source Code Reading

Understanding Understanding Source Code with Functional Magnetic Resonance Imaging

Janet Siegmund^{*,*} Christian Kästner[∞], Sven Apel^{*}, Chris Parnin^{\$}, Anja Bethmann^{\$}, Thomas Leich^{\$}, Gunter Saake[°], and André Brechmann^{\$} [®]University of Passau, Germany [®]Carnegie Mellon University, USA ^{\$}Georgia Institute of Technology, USA [®]Leibniz Inst. for Neurobiology Magdeburg, Germany [§]Metop Research Institute, Magdeburg, Germany [®]University of Magdeburg, Germany

Brain Activation Patterns during Source Code Reading Working Memory and Divided Attention

Language Processing

Brain Activation During Source Code Reading

Understanding Understanding Source Code with Functional Magnetic Resonance Imaging

Janet Siegmund^{*,*} Christian Kästner^w, Sven Apel[#], Chris Parnin^β, Anja Bethmann^θ, Thomas Leich⁶, Gunter Saake^σ, and André Brechmann^θ [#]University of Passau, Germany ^wCarnegie Mellon University, USA ^βGeorgia Institute of Technology, USA ^θLeibniz Inst. for Neurobiology Magdeburg, Germany ^δMetop Research Institute, Magdeburg, Germany ^σUniversity of Magdeburg, Germany

Model for Bottom-Up Program Comprehension

Cognitive Load During Process Model Creation

(Neurauter et al.: Does Creating Process Models Induce Cognitive Overload? Exploring Interactions (in perparation))

 Process model creation can be characterized as an interactive design activity (Recker et al. 2012, Figl et al. 2014)

Process Model Creation as Interactive Design Activity

An Example of an Interactive Design Activity

 Process model creation can be characterized as an interactive design activity (Recker et al. 2012, Figl et al. 2014)

(Soffer, Kaner, and Wand 2011)

An Example of an Interactive Design Activity

 Process model creation can be characterized as an interactive design activity (Recker et al. 2012, Figl et al. 2014)

(Soffer, Kaner, and Wand 2011)

An Example of an Interactive Design Activity

 Process model creation can be characterized as an interactive design activity (Recker et al. 2012, Figl et al. 2014)

(Soffer, Kaner, and Wand 2011)

The Design Platform: Cheetah

J. Pinggera, S. Zugal and B. Weber: Investigating the Process of Process Modeling with Cheetah Experimental Platform. In: Proc. ER-POIS '10, pp. 13–18, 2010.

The Design Platform: Cheetah

Logged model interactions

Type of Modeler Interaction	Description	
CREATE NODE	Create activity or gateway	
CREATE EDGE	Create an edge connecting two nodes	
CREATE CONDITION	Create an edge condition	
RECONNECT EDGE	Reconnect an edge fron one node to another	
DELETE NODE	Delete activity or gateway	
DELETE EDGE	Delete an edge conneting two nodes	
DELETE CONDITION	Delete an edge condition	
RENAME	Rename an activity	
MOVE NODE	Move a node	
MOVE EDGE LABEL	Move the label of an edge	
CREATE/DELETE/MOVE EDGE BENDPOINT	Update the routing of an edge	
UPDATE CONDITION	Update an edge's condition	
VSCROLL	Scroll vertically	
HSCROLL	Scroll horizontally	

Cognitive Load During Design Activities

Cognitive Load characterizes the demands tasks imposed on the limited information processing capacity of the brain.

Modeler-specific factors

- Process Modeling Expertise
- Domain Knowledge
- Cognitive Abilities

Design Artifact

Task-specific factors

- Inherent complexity of task
- Task representation
- Design platform including
 - Modeling notation
 - Tool support

(Wickens and Hollands 1988, Figl 2017)

Assessment of Cognitive Load

• Subjective Ratings

– SWAT, NASA-TLX

- Performance measures
 - Dual-task setting
- Behavioral and physiological measures
 - Heart rate variability
 - Eye tracking, i.e., **pupillary responses**, eye blink rate
 - EEG
 - Galvanic Skin Response

Cognitive Load: A Predictor for Task Performance

artifact (and its quality) is altered

artifact (and its quality) is altered

Decrease of task performance

artifact (and its quality) is altered

No impact on task performance

artifact (and its quality) is altered

No impact on task performance

Enable Measurements that are not Possible with Self-Reports

artifact (and its quality) is altered

Continuous Assessment of Cognitive Load

- Subjective Ratings
 - SWAT, NASA-TLX
- Performance measures
 - Dual-task setting

No continuous measures

Interrupt the main task

- Behavioral and physiological measures
 - Heart rate variability
 - Eye tracking, i.e., pupillary responses, eye blink rate
 - EEG
 - Galvanic Skin Response

Measuring Emotions

Sebastian C. Müller, Thomas Fritz: Stuck and Frustrated or in Flow and Happy: Sensing Developers' Emotions and Progress. ICSE (1) 2015: 688-699

Biological States and Processes as Better Predictors

Sebastian C. Müller, Thomas Fritz:

Using (bio)metrics to predict code quality online. ICSE 2016: 452-463

Potential from a Design Science Perspective

- Design of IT artifacts
- Brain-based IT artifact evaluation
- Design of neuro-adaptive systems
- Development of biofeedback systems
- Development of brain computer interfaces

Neuroscience can Inform the Design of IT Artifacts

Humans prefer curved objects (rather than sharp-angled ones) (Bar and Neta 2007)

J. Gulden et al: From Analytical Purposes to Data Visualizations: A Decision Process Guided by a Conceptual Framework and Eye Tracking (submitted)

J. Gulden et al: From Analytical Purposes to Data Visualizations: A Decision Process Guided by a Conceptual Framework and Eye Tracking (submitted)

J. Gulden et al: From Analytical Purposes to Data Visualizations: A Decision Process Guided by a Conceptual Framework and Eye Tracking (submitted)

Biofeedback System

Neuro-adaptive System

Neuro-adaptive System

Cognitive Load: A Predictor for Task Performance

Continuous Measurement of Cognitive Load

potentially using different modalities

Neuro-adaptive System

Cleaning Pupillary Data with Cheetah Web 1.0

Finish Modeling

den die Daten wieder überprüft. Diese Schritte werden so lange wie holt, bist die Daten vollstär ndig sind. Nachdem dieser Vorgang abg geführt: Die Bank errechnet die verfügbaren finanziellen Mittel des Kunden: Die Bank errechnet das jährliche Einkommen des Kun den: Die Bank erre ssen sind, wird eine Entscheidung, wie im Folgenden beschrieben, gefällt. Wenn der Kredit weniger als € 1.000.000 beträgt, 🛓 ür Kredite über € 1.000.000 oder mehr müssen zwei Mitarbeiter an der Entscheid beteiligt sein. In diesem Fall evaluiert ieder der beiden Mitarbeiter una den Mitarbeiter gemeinsam eine Entscheidung. Falls die Bank die Kreditanfrage positiv bewe ertet, wird dem Kunden ein Angebot vorgelegt. Andernfalls wird dem Kun udet. Sollte der Kunde das Angebot akzeptieren, wird das Geld auf das Konto des Kunden tr d wird die Kreditan sen und der Prozess bee reditanfrage im Computersystem abgeschlossen und der Prozess be endet. Sollte der Kunde das Angebot nicht akzeptieren, wird evaluiert ob das Angebot überarbeitet werden soll. Sollte sich die Bank dazu ein neues Angebot zu machen, muss das Angebot überarbeitet werden. Anschließend muss über die Kreditvergabe erneut entschieden werden (wie beim vorberigen ollen, wird dem Kunden ein negativer Bescheid zugestellt. Anschließend wird die Kreditanfrage im Computersystem abgeschl

Extended entropy tempter tempter tempter tempter tempter tempter	Name Information Constrained States S	 It exactly Units Units Units Units Units Units Units Units Units

S. Zugal, J. Pinggera, M. Neurauter, T. Maran and B. Weber: Cheetah Experimental Platform Web 1.0: Cleaning Pupillary Data. Technical Report arXiv:1703.09468. arXiv, 2017.

Cognitive Overload Detection

Neuro-adaptive System

How to Adapt?

- What is the context in which a particular mental state was observed?
- Challenge: Establishing the link between the IT artifact and the sensor data, for example:
 - between elements in the source code eye fixations
 - between sub-tasks and cognitive load or eye fixations
 - between the state of the IT artifact (e.g., its quality) and cognitive load

Brain-computer Interfaces

Fig. 2: Adaptive System Circuit. Part 1: User gazes at a specific stimulus on the computer screen. Part 2: DSP processes the EEG signals to identify an event in the user's brain. Part 3: DSP translates the EEG event into a mouse event. Part 4: Computer performs the mouse event.

Shihong Huang, Pedro Miranda:

Incorporating Human Intention into Self-Adaptive Systems. ICSE (2) 2015: 571-574

Summary

- Human factors in software engineering require increased attention
- Potential of neuroscience and psychophysiological methods and tools both from a theoretical perspective and a design science perspective
- Many interesting challenges that require highly interdisciplinary research efforts

Acknowledgements

Amine A. Andaloussi, Per Bækgaard, Jan vom Brocke, Andrea Burattin, Kathrin Figl, Marco Furtner, Michael Kaiser, Ekkart Kindler, Ulrich Lobis, Ronald Maier, Thomas Maran, Markus Martini, Manuel Neurauter, John Paulin Hansen, Jakob Pinggera, René Riedl, Pierre Sachse, Isabella Seeber, Pnina Soffer, Gert-Jan de Vreede, Stefan Zugal

> Photos bought via dreamstime under the regular Royalty Free (RF) license

THANK YOU FOR YOUR ATTENTION!